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Abstract

Purpose – This paper aims to present briefly a unified fractional step method for fluid dynamics,
incompressible solid mechanics and heat transfer calculations. The proposed method is demonstrated
by solving compressible and incompressible flows, solid mechanics and conjugate heat transfer
problems.

Design/methodology/approach – The finite element method is used for the spatial discretization
of the equations. The fluid dynamics algorithm used is often referred to as the characteristic-based
split scheme.

Findings – The proposed method can be employed as a unified approach to fluid dynamics, heat
transfer and solid mechanics problems.

Originality/value – The idea of using a unified approach to fluid dynamics and incompressible solid
mechanics problems is proposed. The proposed approach will be valuable in complicated engineering
problems such as fluid-structure interaction and problems involving conjugate heat transfer and
thermal stresses.
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Paper type Research paper

1. Introduction
One of the successful algorithms for incompressible fluid dynamics is the fractional
step method (Chorin, 1968). Time and again this method emerged as one of the best
procedures for incompressible flow computations, due to its simplicity and
effectiveness. Owing to a huge number of papers available on this method, we focus
only on the archival and finite element papers. For further, detailed list of papers on
this topic, readers are referred to the references cited in the recent works listed at the
end. The original fractional step procedure introduced by Chorin has been further
studied by many (Kim and Moin, 1985; Comini and Del Guidice, 1982; Kawahara and
Ohmiya, 1985; Schneider et al., 1978; Donea et al., 1982; Gresho et al., 1984; Rice and
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Schnipke, 1986; Ramaswamy et al., 1986; Rannacher, 1993; Ren and Utnes, 1993). This
method has been combined with other aspects to improve performance and to apply to
other fields of interest such as compressible high-speed flows and solid mechanics
(Zienkiewicz et al., 2005a, 1999a; Zienkiewicz and Codina, 1995; Nithiarasu, 2003, 2006;
Nithiarasu et al., 2004; Nithiarasu and Zienkiewicz, 2006; Bonet and Burton, 1998;
Bonet et al., 2001).

The origin of the fractional step method can be traced back to the pioneering work
of Chorin (1968) in the finite difference context. Many others generalized the method to
finite element discretization (Comini and Del Guidice, 1982; Kawahara and Ohmiya,
1985; Schneider et al., 1978; Donea et al., 1982; Gresho et al., 1984; Rice and Schnipke,
1986; Ramaswamy et al., 1986; Rannacher, 1993; Ren and Utnes, 1993). The accuracy of
the method has been the subject of recent research for many (Brown et al., 2001; Chang
et al., 2002). Over the last ten years, the fractional step method has been combined with
a simple characteristic-based time discretization and extended to unstructured and
finite element-based compressible and incompressible flow calculations (Zienkiewicz
et al., 2005a; Zienkiewicz and Codina, 1995). The basis of the characteristic-based spit
(CBS) scheme and its applications have been discussed in many of the articles
published in the past (Zienkiewicz and Codina, 1995; Zienkiewicz et al., 1999b;
Nithiarasu, 2005, 2003, 2002; Nithiarasu et al., 2004, 2005; Nithiarasu and Liu, 2005,
2006). Our objective here is, thus, not to review the CBS scheme in detail but to
introduce a unified matrix free approach to fluid and solid problems.

The explicit CBS scheme based on an artificial compressibility was introduced in
reference (Nithiarasu, 2003). The method was developed by combining a classical
fractional step method with an artificial compressibility scheme. The
characteristic-based higher order time stepping was adopted to reduce oscillations in
convection dominated flows. The pressure stabilization was achieved by introducing
fractional stages into the solution process.

The explicit fractional step method can be derived from a semi- or fully discrete
form of the Navier-Stokes equations (Nithiarasu and Zienkiewicz, 2006). We employ
only the method derived from the semi-discrete form of the equations in this paper.
In the past the explicit fractional step method reviewed above was seen mainly as a
unified approach to compressible and incompressible flow problems. Though some
previous work on solid dynamics was reported (Zienkiewicz et al., 1999a), previously
reported method was limited by the purely explicit time stepping restricted by the bulk
modulus of the material. In this paper, the method of circumventing such restriction is
proposed via a local time stepping approach. In addition to compressible and
incompressible flow examples, an example of linear, incompressible elasticity is also
presented to demonstrate that the proposed method is a unified approach to both fluid
and solid problems.

2. Problem statement
The generalized fluid dynamics equation in conservation form may be written as:

. Mass conservation:

›r

›t
¼ 2

›Ui

›xi
ð1Þ

HFF
18,2

112



where r is the density and t is the time. We define the mass flow flux as:

Ui ¼ rui ð2Þ

. Momentum conservation:

›Ui

›t
¼ 2

›

›xj
ðujU iÞ þ

›s d
ij

›xj
2

›p

›xi
þ Qm ð3Þ

. Energy conservation:

›ðrEÞ

›t
¼ 2

›

›xi
ðuirEÞ þ

›

›xi
k
›T

›xi

� �
2

›

›xi
ðuipÞ þ

›

›xi
s d

ijuj

� �
þ Qe ð4Þ

where ui are the velocity components, T is the absolute temperature, Q represents
source terms, k is the thermal conductivity, E ¼ cvT þ ð1=2Þuiui , cv is the specific heat
at constant volume and s d

ij are the deviatoric stress components given by:

s d
ij ¼ m

›ui
›xj

þ
›uj
›xi

2
2

3
dij

›uk
›xk

� �
ð5Þ

where dij is the Kronecker delta. In general, m the dynamic viscosity, in the above
equation is a function of temperature, m(T ), and the following relation is used in
compressible flow calculations (Hirsch, 1988):

m ¼
1:45T 3=2

T þ 110
£ 1026 ð6Þ

where T is expressed in Kelvins.
The universal gas law or other appropriate constitutive equation is needed when the

flow is coupled and compressible. In this paper, following universal gas law is used:

p ¼ rRT ð7Þ

where R is the universal gas constant. In addition, the thermodynamic relation relating
pressure and energy is given as:

p ¼ ðg2 1Þ rE 2
1

2

UiUi

r

� �
ð8Þ

The compressible flow problem statement is completed with the following boundary
conditions:

fi ¼ �fi on Gf and q ¼ �q on Gf ð9Þ

in which:

G ¼ Gf < Gf ð10Þ

where fi indicate the variables and q is the flux (or traction).
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With a constant density assumption, the non-conservation form of conservation of
mass and momentum may be written for incompressible flows as:

›r

›t
<

1

b 2

›p

›t
¼ 2r

›ui
›xi

ð11Þ

where b here is an artificial compressibility, and:

›ui
›t

¼ 2uj
›ui
›xj

þ
1

r

›tij

›xj
2

1

r

›p

›xi
þ

Qm

r
ð12Þ

Further, the deviatoric stress relation could be simplified if divergence free velocity
field is assumed.

For incompressible flow problems, the simplified form of energy equation may be
written as:

rcp
›T

›t
þ uj

›T

›xj

� �
¼

›

›xi
k
›T

›xi

� �
ð13Þ

where cp is the specific heat at constant pressure.
The relationship between the incompressible fluid dynamics equations and solid

mechanics equations may be established as follows. The equilibrium equations of an
isothermal elastic solid may be written as (without body forces):

›sij

›xj
¼ 0 ð14Þ

where sij is the total stress tensor and may be expressed in terms of deviatoric stress
and pressure (volumetric stress) as:

sij ¼ s d
ij 2 pdij ð15Þ

The negative sign of pressure term makes it easy to employ the numerical schemes
developed for fluid dynamics problems. Substituting equation (14) into equation (15),
we get the following equation:

›s d
ij

›xj
2

›p

›xi
¼ 0 ð16Þ

The above equation is identical to the Stokes flow momentum equation. The
constitutive relation for incompressible solid problems may be expressed in terms of
displacements as:

s d
ij ¼ G

›ui
›xj

þ
›uj
›xi

2
2

3

›uk
›xk

dij

� �
ð17Þ

where G is the rigidity modulus. For fluid problems, this is replaced with the dynamic
viscosity of the fluid. Since, equation (16) is now written in terms of pressure and
displacements, we need an additional equation to close the problem. For incompressible
materials the additional equation may be obtained via the incompressibility constraint
(volumetric strain), i.e.:
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›ui
›xi

¼ 0 ð18Þ

Equations (16) and (18) may now be solved in a coupled sense to obtain a solution. Many
methods for solving the mentioned equation exhibit oscillatory behavior. Also, the
discretization of the above equilibrium equations normally results in a set of linear
simultaneous equations, which need an efficient solution procedure to handle. To obtain
a matrix free formulation, we rewrite the incompressible solid mechanics equations,
following fluid dynamics approach, as:

. Continuity:

1

c 2

›p

›t
þ r

›_ui
›xi

¼ 0 ð19Þ

. Momentum:

›_ui
›t

¼ 2
1

r

›p

›xi
þ

1

r

›s d
ij

›xj
ð20Þ

For steady state calculations, the acceleration terms _ui in the above equations are replaced
with ui. In the above equations, c (square root of the ratio of the bulk modulus K and
density r) is the wave speed, which is very large for incompressible materials. If we
introduce an artificial, finite c value and iterate using pseudo time t to steady state, we will
be able to obtain a static solution to equations (19) and (20). It is also clear that equation (19)
will approach the divergence free state (equation (18)) at pseudo steady state and gives the
displacement and pressure distribution for an incompressible elastic material.

3. Non-dimensional form
All the results presented in this paper are generated from non-dimensional form of
equations. The non-dimensional scales vary depending on the type of problem solved.
The following subsections explain various non-dimensional scales used here.

3.1 Compressible flows
The following non-dimensional scales are used for compressible flows:

t* ¼
tu1

L
; x*i ¼

xi
L

; r* ¼
r

r1
; p* ¼

p

r1u2
1

u*i ¼
ui
u1

; E* ¼
E

u2
1

; T* ¼
Tcp

u2
1

; c* ¼
c

u1
ð21Þ

The non-dimensional form of the equations becomes:
. Mass conservation:

›r*

›t*
¼ 2

›U *
i

›x*i
ð22Þ
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. Momentum conservation:

›U *
i

›t*
¼ 2

›

›x*j
u*j U

*
i

� �
þ

1

Re

› n*s d*
ij

� �
›x*j

2
›p*

›x*i
ð23Þ

. Energy conservation:

›ðr*E*Þ

›t*
¼ 2

›

›x*i
u*i r

*E*
� �

þ
1

Re Pr

›

›x*i
k*

›T*

›x*i

 !
2

›

›x*i
u*i p

*
� �

þ
1

Re

›

›x*i
n*s d*

ij u
*
j

� � ð24Þ

where Re is the Reynolds number, Pr is the Prandtl number, n * is the viscosity ratio
and k* is the conductivity ratio. These parameters are defined as:

Re ¼
u1L

n1
; Pr ¼

m1cp

k1
; n* ¼

n

n1
; k* ¼

k

k1
ð25Þ

and:

s d*
ij ¼

›u*i

›x*j
þ

›u*j

›x*i
2

2

3
dij

›u*k

›x*k

 !
ð26Þ

In the above equations, subscript 1 indicates a reference quantity and L is a
characteristic dimension.

3.2 Incompressible solid
The non-dimensional scales used here are:

u*i ¼
ui
L
; t 2* ¼

t 2G1

rL 2
; x*i ¼

xi
L

; p* ¼
p

G1

; K* ¼
K

G1

ð27Þ

Substituting the above scales into the equations gives:
. Continuity:

1

K*

›p*

›t*
þ

›_u*i

›x*i
¼ 0 ð28Þ

. Momentum:

›_u*i
›t*

¼ 2
›p*

›x*i
þ G*

›s d*
ij

›x*j
ð29Þ

where G* ¼ G=G1. In the steady state calculation reported in this paper, u*i is replaced
with u*i and K* is replace with c*2.
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3.3 Incompressible thermal flow problems
For conjugate heat transfer problems, following scales are suitable:

t* ¼
ta1

L 2
; x*i ¼

xi
L

; p* ¼
pL 2

r1a2
1

b* ¼
bL

a1

; u*i ¼
uiL

a1

; T* ¼
T 2 T1

T 2 Tw
ð30Þ

The non-dimensional form of the governing equations are, continuity:

1

b2*

›p*

›t*
¼ 2

›u*i

›x*i
; ð31Þ

momentum:

›u*i
›t*

¼ 2u*j
›u*i

›x*j
þ Pr

›s d*
ij

›x*j
2

›p*

›x*i
ð32Þ

and energy:

›T*

›t*
þ

›

›x*j
u*j T

*
� �

¼
›

›x*i

a

a1

›T*

›x*i

 !
ð33Þ

where a ¼ k=rcp is the thermal diffusivity and a1 ¼ afluid is assumed in this study.

4. Explicit fractional step method
It is clear from the equations discussed in the previous section that similarity exists
between fluid and solid problems. Thus, it will be sufficient to develop a
single algorithm to solve these problems. Let us assume the form of compressible
flow equations and discretize the density and momentum equations in time as
follows:

Dr

Dt
¼

rnþ1 2 rn

Dt
¼ 2

›Ui

›xi

n

ð34Þ

and:

DUi

Dt
¼

Unþ1
i 2 Un

i

Dt
¼ 2

›

›xj
ujUi

� �n
þ
›sd

ij

›xj

n

2
›p

›xi

n

þ Qm ð35Þ

It is well known that the above system will be unconditionally unstable if either
appropriate upwinding treatment of convection terms is not employed or if the
pressure is not stabilized. There are several convection and pressure stabilized
schemes available in the literature but we limit our attention towards achieving
stabilization via higher order time stepping and fractional steps. By assuming a
CBS stabilization, one can achieve stable and sensible solution.
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4.1 Explicit CBS scheme using semi-discrete form
The classic CBS scheme may be derived by assuming individual momentum
component equations as convection-diffusion equations and by removing the pressure
term from the momentum equations. The time discretization is carried out
along the characteristic of the these equations and a Taylor expansion is employed
to treat the semi-discrete equations at the same spatial position (Zienkiewicz and
Codina, 1995; Zienkiewicz et al., 1999b; Nithiarasu, 2005). With such an expansion, the
first step of the CBS scheme in its semi-discrete form may be written as:

(1) Step 1. Intermediate momentum:

DU *
i ¼ U *

i 2 U n
i

¼ Dt 2
›

›xj
ðUiujÞ þ

›sd
ij

›xj
2 rgi

" #n

þ
Dt 2

2
uk

›

›xk

›

›xj
ðUiujÞ þ

›p

›xi
2

›sd
ij

›xj
þ rgi

 !n

ð36Þ

where Un
i ¼ UiðtnÞ;Dt ¼ t nþ1 2 t n and * indicates an intermediate quantity. In the

above equation, the last term is a result of the Taylor expansion and this second order
extra term acts as a convection stabilization operator. The above intermediate stage
needs a correction step, which is the third step of the CBS scheme (equation (38)).
Substituting the correction step into the conservation of mass equation (34), and
reorganizing we get:

(2) Step 2. Pressure:

Dr ¼ ðrnþ1 2 rnÞ

¼ 2Dt
›Un

i

›xi
þ u1

›DU*
i

›xi
2 Dtu1

›2pn

›xi›xi
þ u2

›2Dp

›xi›xi

� �" #
ð37Þ

As seen two parameters, u1 and u2, are introduced in the above equation. u1 is a
stabilization parameter, which is introduced by treating the right hand side of equation
(34) at n þ u1 level. The stabilization parameter u1 must be above zero to get any
pressure stability. The parameter u2 is introduced to move between explicit and implicit
treatment of the RHS pressure term. In this paper, we adopt u2 ¼ 0, which means that the
RHS pressure terms are treated explicitly at Step 2.

Once the relation between the pressure and intermediate momentum is established,
we can return to the correction stage, where the actual velocity is computed at the third
step as shown below.

(3) Step 3. Momentum correction:

DUi ¼ Unþ1
i 2 Un

i ¼ DU*
i 2 Dt

›p

›xi

n

ð38Þ

Once the above three steps are completed, the energy calculation is carried out as the
fourth step.
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(4) Step 4. Energy calculation:

ðrEÞnþ1 2 ðrEÞn

Dt
¼2

›

›xi
ðuirEÞ

n þ
›

›xi
k
›T

›xi

� �n

2
›

›xi
ðuipÞ

n þ
›

›xi
s d

ijuj

� �n

þ Qn
e þ

Dt

2
uk

›

›k

›

›xi
ðuirEÞ

n 2
›

›xi
k
›T

›xi

� �n�

þ
›

›xi
ðuipÞ

n 2
›

›xi
s d

ijuj

� �n
2Qn

e

�
ð39Þ

The standard Galerkin approximation can now be applied to all the three steps.
Assuming linear variation for all variables, the fully discrete matrix form for the four
steps may be written as:

Step 1:

MDU* ¼ 2DtCUn þ DtKUn þKsU
n þ Fn ð40Þ

Assuming u2 ¼ 0.

Step 2:

MDr ¼ 2u1DtDUn 2 u1DtDDU* þ u1DtLp
n ð41Þ

The matrix form of the correction step is

Step 3:

MDU ¼ ~MDU* 2 DtGpn ð42Þ

and finally the energy equation in its matrix form is

Step 4:

MD ~E ¼ 2Dt C ~Eþ C~pþ L ~TþKe ~uþ
Dt

2
Ks

~Eþ
Dt

2
Ks ~pþ Fe

� �
ð43Þ

In the above equations C, G, D, L and K are discrete convection, gradient, divergence,
Laplacian and viscous operators, Ks is the stabilization matrix, Ke is the matrix
associated with the work done by deviatoric stresses in the energy equation, F and Fe

are the forcing vectors and M is the mass matrix. To obtain a matrix free formulation,
we lump the mass matrix by summing up the rows for linear elements. In the above
equations, , represents a nodal vector and ~E contains the nodal values of rE. It should
be noted that the third and higher order terms are neglected in this study. For further
details on the construction of the finite element matrices, the readers are referred to
(Zienkiewicz et al., 2005a).

At the discrete stage of the formulation, the Dirichlet conditions for velocity are
applied only at Step 3. However, traction conditions can either be applied at Step 1 or at
Step 3 (Nithiarasu, 2002).

The equations of incompressible flows and incompressible solids can be discretized
in a similar fashion to that of compressible flows detailed above.

Unified
fractional step

method

119



5. Different cases
5.1 Compressible flows
In addition to the higher order terms introduced by the characteristic Galerkin
discretization, an additional artificial dissipation (Nithiarasu et al., 1998) and/or
variable smoothing (Thomas and Nithiarasu, 2005) may also be necessary to get a
smooth compressible flow solution. The solution algorithm for compressible flow
problems may be summarised as:

(1) Calculate the intermediate momentum.

(2) Calculate density.

(3) Calculate energy.

(4) Calculate pressure (thermodynamic relation).

(5) Calculate local speed of sound and Mach number (gas law).

The transient solution to a compressible flow problem may be obtained via explicit
time stepping or via matrix free dual time stepping.

5.2 Solid mechanics
For isothermal incompressible solid problems, the energy equation can be decoupled
from other equations. The speed of sound c is replaced with a pseudo value b
calculated as (Nithiarasu, 2006):

b ¼ maxðv1; v2Þ ð44Þ

where v1 and v2 are the wave speeds due to the rigidity modulus and local change in
displacements, respectively. These values are defined as:

v1 ¼
G†t*

h
; v2 ¼

ffiffiffiffiffiffiffiffi
uiui

p
ð45Þ

Here, G† ¼ ðG=rÞ, t* is a time scale and h is the local element size. The time scale t* is
taken equal to 2.0 based on the observations in fluid dynamics calculations (Malan et al.,
2002; Nithiarasu, 2003). The local nodal element size for linear triangles is calculated as
the minimum size of the elements surrounding a node (Zienkiewicz et al., 2005a).

To obtain a solution for an incompressible elastic solid problem, equations (19) and
(20) are solved using the fractional steps to steady state. However, a transient
algorithm can be developed using the following dual time stepping approach if
necessary. We introduce a discrete approximation to the true transient term, ›2ui=›t

2,
to the RHS of the correction step (Nithiarasu, 2006) (assuming viscous resistance
equal to zero):

unþ1
i ¼ ~ui 2

1

r
Dt

›p

›xi

n

2 Dt
umþ1
i 2 2umi þ um21

i

Dt 2
ð46Þ

where superscripts m þ 1, m and m 2 1 represent the real time variation. At pseudo
steady state unþ1

i ¼ uni ¼ umþ1
i . This immediately shows that the pseudo time stepping

is simply used as an iterative mechanism to obtain a transient solution. During each
real time step unþ1

i < uni and pnþ1 < pn need to be maintained to get an accurate
transient solution.
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5.3 Incompressible thermal flow
Here, a pseudo compressibility factor b is introduced in place of c again to decouple the
energy equation from other equations (Nithiarasu, 2003). The artificial compressibility
factor is calculated as:

b ¼ max 1;
ffiffiffiffiffiffiffiffi
uiui

p
;
2n

h
;
2a

h

� �
ð47Þ

where 1 is a small real number. The optimal value (from experience) of this quantity is
0.5. A dual time stepping procedure similar to the solid mechanics discussed above is
essential to get transient state (Nithiarasu, 2003).

6. Numerical examples
The numerical examples are considered under three different categories. Only sample
problems are given here and for further details the readers are referred to other papers
by the author in this area.

6.1 Compressible flow
Here, inviscid flow past an NACA0012 aerofoil is considered in two dimensions.
Figure 1 shows the domain used and the unstructured mesh. As seen the mesh is very
fine close to the aerofoil surface. The inlet Mach number for the problem is at a
subsonic speed of 0.85. The angle of attack at inlet is 08 to the horizontal. The domain
consists of inlet, exit and wall boundaries. At inlet the free stream velocity is prescribed
and at exit density is prescribed. The energy value at inlet is calculated from the free
stream velocity and Mach number and forced. The calculation starts with initial
conditions of r* ¼ 1; u*1 ¼ 1 and u*2 ¼ 0.

Figures 2 and 3 show the result obtained at an inlet Mach number of 0.85. The
pressure contours shown in Figure 2 shows the shock on the top surface of the aerofoil.
The comparison of the pressure coefficient with the AGARD (Pulliam and Barton,
1985) results show a good agreement with the present result. The fine mesh used is
shown in Figure 1. The number of elements used here is 21,000. The coarse mesh
consists of about one third of the number of elements in the fine mesh.

Figure 1.
Inviscid flow past a
NACA0012 aerofoil.
Unstructured mesh

(a) Full domain (b) Mesh close to the aerofoil
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6.2 Solid mechanics
Here, a square plate with a slot at the centre as shown in Figure 4 is considered.
The slot is subjected to zero traction but the top and bottom sides of the plate are
subjected to a vertical traction of:

t2 ¼ t22 2 p ¼ 1 ð48Þ

The vertical sides are restrained from moving in the horizontal direction but allowed to move
in the vertical direction and aG* value of 8 is used here. The problem has been solved with
and without extra pressure stabilization. The extra pressure stabilization was introduced
using lumped and consistent mass matrices (Lahiri et al., 2005; Nithiarasu, 2006).

Figure 2.
Inviscid flow past a
NACA0012 aerofoil.
Contours of pressure

Figure 3.
Inviscid flow past a
NACA0012 aerofoil.
Pressure coefficient
distribution

–1.5
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–0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
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Horizontal distance
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AGARD
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To carry out the analysis only one quarter of the domain was used. The mesh used
consists of 938 linear triangular elements and 538 nodes. Figure 5 shows the pressure
distribution along the axes and vertical displacement along the top horizontal side. The
results are also compared against the GLS results (Zienkiewicz et al., 2005b). As seen
the agreement of the pressure is generally good among the methods. The extra
pressure stabilization eliminated the small pressure oscillation close to the top side.
However, the agreement between the extra stabilized results and others are not good
for the vertical displacement distribution.

6.3 Incompressible thermal flow
To demonstrate the incompressible fluid dynamics and conjugate heat transfer, forced
convection flow and heat transfer in a model fin and tube heat exchanger are studied
here. Owing to the low-memory needs and easy implementation, the fully explicit
forms is chosen here. The comparison of speed between the fully explicit method with
local time stepping against other implicit methods, show that the explicit method is
robust and in some cases outperforms the other methods (Codina et al., 2006;
Massarotti et al., 2006).

Figure 6 shows a partial representation of the model. The fins are attached to the solid
wall of the heat exchanger as shown in the figure. The outside solid surface is assumed to
be at a higher temperature than the air flow at the inlet to the heat exchanger. Thus, the
heat is expected to pass through the solid wall and then dissipated to the fluid via the
inside solid wall surface and the fin surfaces. The fluid side, bottom and top boundaries
are subjected to zero flux boundary conditions. The inlet velocity was assumed to be
constant and uniform. To demonstrate the method, a inlet Reynolds number of 200 and
thermal conductivity ratio between the solid and fluid of 10 are assumed.

Figure 7 shows the unstructured surface mesh used in the calculations. The mesh
generated using the meshing tools available within Swansea, School of Engineering

Figure 4.
A slotted tension strip.
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(Morgan et al., 1999; Weatherill et al., 2001). As seen the mesh is refined close to the
solid fluid interface to have smooth change in the temperature distribution. The total
number of tetrahedron elements used is just over 1.7 million.

Figures 8-10 show the results obtained. In Figure 8, the surface contours of pressure
velocity components and temperature are presented. As seen the contours are generally
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Figure 7.
Conjugate heat transfer in
a model fin and tube heat
exchanger. Unstructured

mesh
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Figure 8.
Conjugate heat transfer in
a model fin and tube heat
exchanger. Pressure,
velocity and temperature
contours
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smooth including the pressure solution. In Figure 9, the temperature distribution at
different sections, along the length (x1 direction) of the heat exchanger is presented. As
seen the transition of the temperature from solid to fluid is smooth without any
noticeable discontinuity.

Figure 10 shows the temperature distribution at sections x1 ¼ 2 and x1 ¼ 14, along
different lines. Figure 10(a) shows the temperature distribution in the x2 direction along
the lines at the middle of the fins and Figure 10(b) shows the temperature distribution
at x2 ¼ 0.523 along the x3 direction. Figure 10 (c) and (d) show the temperature
distributions along x2 direction, at sections x3 ¼ 0.407 and 1.064, respectively. As seen

Figure 9.
Conjugate heat transfer in
a model fin and tube heat

exchanger. Temperature
contours at different

sections
(a) x1 = 2 (b) x1 = 6 (c) x1 = 10 (d) x1 = 14

Figure 10.
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a model fin and tube heat
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distributions
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majority of the solid wall portions show a linear variation in temperature. In the fluid
region, including fins, the temperature variation is nonlinear. It is also noticed that the
no heat flux conditions at the fluid side boundary is effectively captured. In Figure 10
(c) and (d), a rapid change in temperature clearly shows in interface. In addition, the
average temperature at section x1 ¼ 2 is much lower than at section x1 ¼ 14 as
expected. All the results shown in Figure 10 are consistent with the qualitative solution
expected.

7. Conclusions
A unified approach for fluid dynamics and incompressible solid mechanics has been
presented. The examples presented demonstrated that a single algorithm can be
employed in the calculations of high speed gas flows, low-speed incompressible flows
and incompressible solid mechanics. The next obvious step would be to extend the
work to more general solid mechanics framework such as generalized elastic and
viscoelastic behavior. The proposed approach also provides a platform for carrying out
fluid-structure interaction studies using a unified approach.

References

Bonet, J. and Burton, A.J. (1998), “A simple averaged nodal pressure tetrahedral element for
nearly incompressible dynamic explicit applications”, Communications in Numerical
Methods in Engineering, Vol. 14, pp. 437-49.

Bonet, J., Marriott, H. and Hassan, O. (2001), “Stability and comparison of different linear
tetrahedral formulations for nearly incompressible explicit dynamic applications”,
International Journal for Numerical Methods in Engineering, Vol. 50, pp. 119-33.

Brown, D.L., Cortez, R. and Minion, M.L. (2001), “Accurate projection methods for the
incompressible Navier-Stokes equations”, Journal of Computational Physics, Vol. 168,
pp. 464-99.

Chang, W., Giraldo, F. and Perot, B. (2002), “Analysis of an exact fractional step method”, Journal
of Computational Physics, Vol. 180, pp. 183-99.

Chorin, A.J. (1968), “Numerical solution of the Navier-Stokes equations”, Mathematics of
Computation, Vol. 22, pp. 745-62.

Codina, R., Owen, H.C., Nithiarasu, P. and Liu, C.B. (2006), “Numerical comparison of CBS and
SGS as stabilization techniques for the incompressible Navier-Stokes equations”,
International Journal of Numerical Methods in Engineering, Vol. 66, pp. 1672-89.

Comini, G. and Del Guidice, S. (1982), “Finite element solution of incompressible Navier-Stokes
equations”, Num. Heat Transfer, Part A Applications, Vol. 5, pp. 463-78.

Donea, J., Giuliani, S., Laval, H. and Quartapelle, L. (1982), “Finite element solution of unsteady
Navier-Stokes equations by a fractional step method”, Computer Methods in Applied
Mechanics and Engineering, Vol. 33, pp. 53-73.

Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D. (1984), “A modified finite element method for
solving incompressible Navier-Stokes equations. Part I theory”, International Journal for
Numerical Methods in Engineering, Vol. 4, pp. 557-98.

Hirsch, C. (1988), Numerical Computation of Internal and External Flows, Fundamentals of
Numerical Discretization, Vol. 1, Wiley, New York, NY.

Kawahara, M. and Ohmiya, K. (1985), “Finite element analysis o f density flow using the velocity
correction procedure”, International Journal for Numerical Methods in Engineering, Vol. 5,
pp. 981-93.

HFF
18,2

128



Kim, J. and Moin, P. (1985), “Application of a fractional step method to incompressible
Navier-Stokes equations”, Journal of Computational Physics, Vol. 59, pp. 308-23.

Lahiri, S.K., Bonet, J., Peraire, J. and Casals, L. (2005), “A variationally consistent fractional
time-step integration method for incompressible and nearly incompressible Lagrangian
dynamics”, International Journal for Numerical Methods in Engineering, Vol. 63,
pp. 1371-95.

Malan, A.G., Lewis, R.W. and Nithiarasu, P. (2002), “An improved unsteady, unstructured,
artificial compressibility, finite volume scheme for viscous incompressible flows:
Part I. Theory and implementation”, International Journal for Numerical Methods in
Engineering, Vol. 54, pp. 695-714.

Massarotti, N., Arpino, F., Lewis, R.W. and Nithiarasu, P. (2006), “Explicit and semi-implicit CBS
procedures for incompressible viscous flows”, International Journal of Numerical Methods
in Engineering, Vol. 66, pp. 1618-40.

Morgan, K., Weatherill, N.P., Hassan, O., Brookes, P.J., Said, R. and Jones, J. (1999), “A parallel
framework for multidisciplinary aerospace engineering simulations using unstructured
meshes”, International Journal for Numerical Methods in Fluids, Vol. 31, pp. 159-73.

Nithiarasu, P. (2002), “On boundary conditions of the CBS algorithm for computational fluid
dynamics”, International Journal of Numerical Methods in Engineering, Vol. 54, pp. 523-36.

Nithiarasu, P. (2003), “An efficient artificial compressibility (AC) scheme based on the
characteristic based split (CBS) method for incompressible flows”, International Journal
for Numerical Methods in Engineering, Vol. 56, pp. 1815-45.

Nithiarasu, P. (2005), “An arbitrary Eulerian Lagrangian (ALE) method for free surface flow
calculations using the characteristic based split (CBS) scheme”, International Journal for
Numerical Methods in Fluids, Vol. 48, pp. 1415-28.

Nithiarasu, P. (2006), “A matrix free fractional step method for static and dynamic
incompressible solid mechanics”, International Journal for Computational Methods in
Engineering Science and Mechanics, Vol. 7 No. 5, pp. 369-80.

Nithiarasu, P. and Liu, C-B. (2005), “Steady and unstable flow calculations in a double driven
cavity using the explicit CBS scheme”, International Journal for Numerical Methods in
Engineering, Vol. 63, pp. 380-97.

Nithiarasu, P. and Liu, C-B. (2006), “An explicit characteristic based split (CBS) scheme for
incompressible turbulent flows”, Computer Methods in Applied Mechanics and
Engineering, Vol. 7, pp. 369-80.

Nithiarasu, P. and Zienkiewicz, O.C. (2006), “Analysis of an explicit and matrix free fractional
step method for incompressible flows”, Computer Methods in Applied Mechanics and
Engineering, Vol. 195, pp. 5537-51.

Nithiarasu, P., Massarotti, N. and Mathur, J.S. (2005), “Forced convection heat transfer from
solder balls on a printed circuit board using the characteristic based split (CBS) scheme”,
International Journal of Numerical Methods in Heat & Fluid Flow, Vol. 15, pp. 73-95.

Nithiarasu, P., Mathur, J.S., Weatherill, N.P. and Morgan, K. (2004), “Three-dimensional
incompressible flow calculations using the characteristic based split (CBS) scheme”,
International Journal for Numerical Methods in Fluids, Vol. 44, pp. 1207-29.

Nithiarasu, P., Zienkiewicz, O.C., Sai, B.V.K.S., Morgan, K., Codina, R. and Vázquez, M. (1998),
“Shock capturing viscosities for the general fluid mechanics algorithm”, International
Journal for Numerical Methods in Fluids, Vol. 28, pp. 1325-53.

Pulliam, T.H. and Barton, J.T. (1985) AIAA 23rd Aerospace Sciences Meeting – Euler
computations of AGARD working group 07 airfoil test cases, AIAA Paper – 85-0018.

Unified
fractional step

method

129



Ramaswamy, B., Kawahara, M. and Nakayama, T. (1986), “Lagrangian finite element method for
the analysis of two dimensional sloshing problems”, International Journal for Numerical
Methods in Fluids, Vol. 6, pp. 659-70.

Rannacher, R. (1993), “On Chorin projection method for the incompressible Navier-Stokes
equations”, Lecture Notes in Mathematics, Vol. 1530, pp. 167-83.

Ren, G. and Utnes, T. (1993), “A finite element solution of the time dependent incompressible
Navier-Stokes equations using a modified velocity correction method”, International
Journal for Numerical Methods in Fluids, Vol. 17, pp. 349-64.

Rice, J.G. and Schnipke, R.J. (1986), “An equal-order velocity-pressure formulation that does not
exhibit spurious pressure modes”, Computer Methods in Applied Mechanics and
Engineering, Vol. 58, pp. 135-49.

Schneider, G.E., Raithby, G.D. and Yovanovich, M.M. (1978), “Finite element analysis of
incompressible flow incorporating equal order pressure and velocity interpolation”, in
Taylor, C., Morgan, K. and Brebbia, C.A. (Eds), Numerical Methods in Laminar and
Turbulent Flow, Pentech Press, Plymouth.

Thomas, C. and Nithiarasu, P. (2005), “Influences of element size and variable smoothing on
inviscid compressible flow solution”, International Journal of Numerical Methods for Heat
and Fluid Flow, Vol. 15, pp. 420-8.

Weatherill, N.P., Hassan, O., Morgan, K., Jones, J.W. and Larwood, B. (2001), “Towards fully
parallel aerospace simulations on unstructured meshes”, Engineering Computations,
Vol. 18, pp. 347-75.

Zienkiewicz, O.C. and Codina, R. (1995), “A general algorithm for compressible and
incompressible flow – Part I: the split, characteristic-based scheme”, International
Journal for Numerical Methods in Fluids, Vol. 20, pp. 869-85.

Zienkiewicz, O.C., Taylor, R.L. and Nithiarasu, P. (2005a), The Finite Element Method for Fluid
Dynamics, 6th ed., Elsevier, Amsterdam.

Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005b), The Finite Element Method. Its Basis &
Fundamentals, 6th ed., Elsevier, Amsterdam.

Zienkiewicz, O.C., Rojek, J., Taylor, R.L. and Pastor, M. (1999a), “Triangles and tetrahedra in
explicit dynamic codes for solids”, International Journal for Numerical Methods in
Engineering, Vol. 43, pp. 565-83.

Zienkiewicz, O.C., Nithiarasu, P., Codina, R., Vázquez, M. and Ortiz, P. (1999b), “The characteristic
based split procedure: an efficient and accurate algorithm for fluid problems”,
International Journal for Numerical Methods in Fluids, Vol. 31, pp. 359-92.

Further reading

Gresho, P.M. and Sani, R.L. (2000), Incompressible Floe and the Finite Element Method,
Isothermal Laminar Flow, Vol. 2, Wiley, New York, NY.

Shuen, J.S., Chen, K.H. and Choi, Y.H. (1993), “A coupled implicit method for chemical
non-equilibrium flows at all speeds”, Journal of Computational Physics, Vol. 106, pp. 306-18.

Corresponding author
P. Nithiarasu can be contacted at: P.Nithiarasu@swansea.ac.uk

HFF
18,2

130

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


